74 research outputs found

    Perfect subsets of generalized Baire spaces and long games

    Full text link
    We extend Solovay's theorem about definable subsets of the Baire space to the generalized Baire space λλ{}^\lambda\lambda, where λ\lambda is an uncountable cardinal with λ<λ=λ\lambda^{<\lambda}=\lambda. In the first main theorem, we show that that the perfect set property for all subsets of λλ{}^{\lambda}\lambda that are definable from elements of λOrd{}^\lambda\mathrm{Ord} is consistent relative to the existence of an inaccessible cardinal above λ\lambda. In the second main theorem, we introduce a Banach-Mazur type game of length λ\lambda and show that the determinacy of this game, for all subsets of λλ{}^\lambda\lambda that are definable from elements of λOrd{}^\lambda\mathrm{Ord} as winning conditions, is consistent relative to the existence of an inaccessible cardinal above λ\lambda. We further obtain some related results about definable functions on λλ{}^\lambda\lambda and consequences of resurrection axioms for definable subsets of λλ{}^\lambda\lambda

    Measurable cardinals and good Σ1(κ)\Sigma_1(\kappa)-wellorderings

    Full text link
    We study the influence of the existence of large cardinals on the existence of wellorderings of power sets of infinite cardinals κ\kappa with the property that the collection of all initial segments of the wellordering is definable by a Σ1\Sigma_1-formula with parameter κ\kappa. A short argument shows that the existence of a measurable cardinal δ\delta implies that such wellorderings do not exist at δ\delta-inaccessible cardinals of cofinality not equal to δ\delta and their successors. In contrast, our main result shows that these wellorderings exist at all other uncountable cardinals in the minimal model containing a measurable cardinal. In addition, we show that measurability is the smallest large cardinal property that interferes with the existence of such wellorderings at uncountable cardinals and we generalize the above result to the minimal model containing two measurable cardinals.Comment: 14 page

    Continuous reducibility and dimension of metric spaces

    Full text link
    If (X,d)(X,d) is a Polish metric space of dimension 00, then by Wadge's lemma, no more than two Borel subsets of XX can be incomparable with respect to continuous reducibility. In contrast, our main result shows that for any metric space (X,d)(X,d) of positive dimension, there are uncountably many Borel subsets of (X,d)(X,d) that are pairwise incomparable with respect to continuous reducibility. The reducibility that is given by the collection of continuous functions on a topological space (X,τ)(X,\tau) is called the \emph{Wadge quasi-order} for (X,τ)(X,\tau). We further show that this quasi-order, restricted to the Borel subsets of a Polish space (X,τ)(X,\tau), is a \emph{well-quasiorder (wqo)} if and only if (X,τ)(X,\tau) has dimension 00, as an application of the main result. Moreover, we give further examples of applications of the technique, which is based on a construction of graph colorings

    A hierarchy of Ramsey-like cardinals

    Get PDF
    We introduce a hierarchy of large cardinals between weakly compact and measurable cardinals, that is closely related to the Ramsey-like cardinals introduced by Victoria Gitman, and is based on certain infinite filter games, however also has a range of equivalent characterizations in terms of elementary embeddings. The aim of this paper is to locate the Ramsey-like cardinals studied by Gitman, and other well-known large cardinal notions, in this hierarchy

    Infinite computations with random oracles

    Full text link
    We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable? We show that the answer is independent from ZFC for ordinal time machines (OTMs) with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider, infinite time Turing machines (ITTMs), unresetting and resetting infinite time register machines (wITRMs, ITRMs), and \alpha-Turing machines for countable admissible ordinals \alpha

    Preserving levels of projective determinacy by tree forcings

    Full text link
    We prove that various classical tree forcings -- for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing -- preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes classes are added to thin projective transitive relations by these forcings.Comment: 3 figure

    Canonical Truth

    Full text link
    We introduce and study a notion of canonical set theoretical truth, which means truth in a `canonical model', i.e. a transitive class model that is uniquely characterized by some \in-formula. We show that this notion of truth is `informative', i.e. there are statements that hold in all canonical models but do not follow from ZFC, such as Reitz' ground model axiom or the nonexistence of measurable cardinals. We also show that ZF+V=L[R]V=L[\mathbb{R}]+AD has no canonical models. On the other hand, we show that there are canonical models for `every real has sharp'. Moreover, we consider `theory-canonical' statements that only fix a transitive class model of ZFC up to elementary equivalence and show that it is consistent relative to large cardinals that there are theory-canonical models with measurable cardinals and that theory-canonicity is still informative in the sense explained above

    The Hurewicz dichotomy for generalized Baire spaces

    Full text link
    By classical results of Hurewicz, Kechris and Saint-Raymond, an analytic subset of a Polish space XX is covered by a KσK_\sigma subset of XX if and only if it does not contain a closed-in-XX subset homeomorphic to the Baire space ωω{}^\omega \omega. We consider the analogous statement (which we call Hurewicz dichotomy) for Σ11\Sigma^1_1 subsets of the generalized Baire space κκ{}^\kappa \kappa for a given uncountable cardinal κ\kappa with κ=κ<κ\kappa=\kappa^{<\kappa}, and show how to force it to be true in a cardinal and cofinality preserving extension of the ground model. Moreover, we show that if the Generalized Continuum Hypothesis (GCH) holds, then there is a cardinal preserving class-forcing extension in which the Hurewicz dichotomy for Σ11\Sigma^1_1 subsets of κκ{}^\kappa \kappa holds at all uncountable regular cardinals κ\kappa, while strongly unfoldable and supercompact cardinals are preserved. On the other hand, in the constructible universe L the dichotomy for Σ11\Sigma^1_1 sets fails at all uncountable regular cardinals, and the same happens in any generic extension obtained by adding a Cohen real to a model of GCH. We also discuss connections with some regularity properties, like the κ\kappa-perfect set property, the κ\kappa-Miller measurability, and the κ\kappa-Sacks measurability.Comment: 33 pages, final versio
    corecore